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Abstract— Normal human brain exhibits approximately bi-
fold symmetry with respect to its midsagittal plane (MSP).
The objective of this work is to investigate the effect of
doubling atlases (i.e., reference images) used in multi-atlas
fusion methods by exploiting the inherent bilateral symmetry of
human brain. To this end, we perform automated segmentation
of 15 subcortical structures using Local Weighted Voting (LWV)
fusion method with varying number of atlases. We consider
three specific scenarios for atlases while performing fusion: (i)
fusion with original OASIS atlases, (ii) with atlases obtained by
flipping the original atlases based on their MSP, and (iii) with
both original and flipped atlases. Evaluations are performed
on the publicly available OASIS dataset of 20 normal human
brain MR images. One of the key findings of this study is
that when the number of atlases available for fusion is less
than 10, fusion by combining both the original and flipped
atlases provided more accurate segmentations than using only
the original atlases, or only the flipped atlases.

I. INTRODUCTION

Atlas (i.e., reference image) based methods are widely
used in medical imaging for automated segmentation of
anatomical structures. Multiple atlases based segmentation
methods (i.e., atlas fusion methods) are empirically proven to
provide more accurate segmentations than single-atlas based
methods [1], [2]. One of the main reasons for such improved
accuracy is because multiple atlases could model and account
for a wider anatomical variability of structures than single
atlas based methods. Another key reason is that segmentation
errors associated with the propagation of segmentations from
individual atlases are averaged out while combining results
from multiple atlases.

However, creation of large number of atlases could be a
very challenging task for many applications. For example, the
average expert-time required for performing manual labeling
of brain structures from scratch on an image of 1 mm3

resolution is about 2-3 days [3]. Another common problem
encountered in many applications is that it is difficult to get
appropriate datasets along with the consent from participants
to use those datasets in the preparation of atlases, and thereby
limiting the number of atlases.

A common hypothesis in case of normal human brain is
that it exhibits approximately bilateral symmetry with respect
to its midsagittal plane (MSP). A canonical correlation anal-
ysis of brain structures presented in [4] also shows a strong
correlation between each pair of corresponding structures in
the left and right hemispheres. Symmetry analysis of human
brain with respect to the MSP has been used in the literature
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for detection and segmentation of brain pathologies like brain
tumors [5]. In view of the aforementioned difficulties in the
creation of multiple atlases, in this work, we double the exist-
ing atlases by exploiting the inherent symmetry, and evaluate
its impact on the accuracy of automated segmentation of
brain structures.

There are only few works in the literature ([6], [7], [8])
where the existing atlases are flipped and doubled based on
MSP. However, no evaluations have been reported so far
that analyze the effect of doubling atlases on segmentation
accuracy with varying number of atlases. In addition to a
detailed evaluation with varying number of atlases, in this
work, we also present a detailed evaluation of segmentation
accuracy while using (i) only the original atlases, (ii) only the
flipped atlases, and (iii) both the original and flipped atlases.

II. METHODS

In this section, we first present the details of the method
we use to automatically extract the MSP, and then the multi-
atlas fusion method we use to merge segmentation results
obtained from multiple atlases.

A. MSP Extraction Method

The algorithm presented in [9] is used in this paper to
automatically extract the MSP. It is a fast and accurate
method that finds out the MSP based on bilateral symmetry
maximization.

The key steps involved in the algorithm of [9] are as
follows. Bilateral symmetry measure is based on edge fea-
tures extracted from image. A 3D Sobel edge detector is first
applied on the input image, followed by thresholding. Note
that applying Sobel edge detector is a fast and effective way
to enhance edges, and it also removes high frequency noise,
improving the robustness of the method. It was observed [9]
that 4% of the brightest voxels in the enhanced image are
good enough to represent edge features, and hence a binary
image is created by applying the corresponding threshold on
the output of the Sobel edge detector.

Given a candidate plane, the degree of symmetry of the
input neuro-image with respect to that plane is evaluated
by computing the correlation between the aforementioned
binary image, and its flipped copy with respect to the
candidate plane. A plane can be uniquely represented by a set
of three points in the corners of the image. By varying these
points, it is possible to represent any sagittal plane. Hence,
these three points are systematically varied in a 3-stage
multi-scale approach, such that the algorithm converges to a
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(a) Ground Truth (b) Original Atlases (c) Flipped Atlases (d) Original+Flipped

Fig. 1: Screen-shot of segmentation results for 15 brain structures for one of the images in the OASIS dataset. Number of
atlases used is 4 for this result. Ground truth segmentations are shown in column-(a). Segmentation results obtained based
on original atlases, flipped atlases, and combined atlases are shown in columns (b), (c) and (d) respectively.

solution (i.e., sagittal plane) that provides the best correlation
between the original and flipped binary images.

B. Fusion Method

Local Weighted Voting (LWV) based fusion is used in this
work as it is one of the best and widely used methods [1],
[10]. LWV method quantifies locally how similar each atlas
is to the target image to be segmented, and accordingly
weighs labels propagated from each atlas. It then selects the
label that has higher cumulative weight.

Let N be the total number of atlases. Let Xj
p and wj

p

respectively represent the propagated label and similarity
weight corresponding to the jth atlas at the pth voxel. Let
δ be a Kroneker delta function. Let l represent any of the
possible labels that can be assigned to the target image. Let
Yp be the output label assigned by LWV method to the pth

voxel in the target image, and it can be computed using the

following equation:

Yp = argmax
l

N∑
j=1

wj
p δ
(
Xj

p , l
)
. (1)

Similarity weights (i.e., wj
p) are computed in this work

using Normalized Cross Correlation (NCC). All NCC val-
ues are rescaled voxel-wise such that the minimum and
maximum values of wj

p are equal to 0 and 1 respectively.
Furthermore, in order to save the computational time, instead
of computing NCC over the entire image, we a create a mask
that contains only those voxels where there is a disagreement
between at least two atlases regarding the output label to
assigned, and we compute NCC values only at those voxels.

III. RESULTS

Evaluations are performed on the publicly available
OASIS dataset [11] of 20 normal human brain MR images.
Fifteen brain structures are considered for the evaluation.
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TABLE I: Average Dice Similarity Metric (DSM) values for segmentation of 15 subcortical structures, and a dataset of
20 OASIS images. Results with (i) original, (ii) flipped, and (iii) combined atlases are presented while using 3, 10 and 19
atlases.

Label Structure DSM - 3 Atlases DSM - 10 Atlases DSM - 19 Atlases
No. Name Original Flipped Combined Original Flipped Combined Original Flipped Combined

1 L-Hippocampus 79.43% 79.08% 81.60% 83.90% 83.09% 84.02% 84.07% 83.72% 84.12%
2 R-Hippocampus 80.20% 78.98% 81.44% 83.68% 83.12% 83.77% 84.04% 83.28% 83.92%
3 L-Lateral Ventricle 83.54% 82.75% 85.43% 87.53% 86.97% 87.77% 87.79% 87.41% 87.93%
4 R-Lateral Ventricle 82.27% 81.88% 84.25% 86.70% 85.89% 86.91% 87.05% 86.30% 86.93%
5 L-Caudate 83.02% 81.99% 84.31% 87.11% 86.16% 87.24% 87.15% 85.78% 86.95%
6 R-Caudate 82.44% 82.08% 84.11% 87.16% 86.64% 87.48% 86.96% 86.64% 87.16%
7 L-Amygdala 70.72% 70.27% 73.22% 77.15% 76.92% 77.67% 77.71% 77.20% 77.80%
8 R-Amygdala 70.84% 69.04% 73.25% 77.74% 76.97% 78.13% 78.52% 77.98% 78.58%
9 L-Putamen 85.81% 85.42% 86.85% 89.73% 89.32% 89.88% 89.68% 89.24% 89.58%
10 R-Putamen 85.58% 84.96% 86.64% 89.44% 89.04% 89.51% 89.47% 89.15% 89.43%
11 L-Thalamus 87.17% 86.42% 88.09% 90.32% 88.58% 89.91% 90.68% 89.13% 90.29%
12 R-Thalamus 87.09% 85.95% 87.83% 89.77% 89.07% 89.91% 90.08% 89.26% 90.01%
13 Brain Stem 88.39% 87.92% 89.26% 91.53% 91.38% 91.66% 91.67% 91.57% 91.65%
14 3rd Ventricle 69.00% 68.40% 73.27% 77.58% 76.74% 78.39% 78.57% 78.11% 78.86%
15 4th Ventricle 77.12% 76.03% 79.69% 82.67% 82.31% 83.22% 83.11% 82.85% 83.19%

AVERAGE 80.84% 80.08% 82.62% 85.47% 84.81% 85.70% 85.77% 85.18% 85.76%
Standard Deviation 6% 6% 6% 5% 5% 5% 5% 5% 5%

Fig. 2: Overall Dice Similarity Metric (DSM) values for all 3
approaches, with varying number of atlases. DSM presented
here are values averaged across all 15 subcortical structures
and a dataset of 20 OASIS images.

The details of structure names and their corresponding label
numbers are presented in the first two columns of Table I.

All 20 images in the dataset are first flipped based on their
MSP, as described in Section II-A. Each of the original 20
images are registered to the remaining 19 images and their
corresponding flipped images in a leave-one-out manner. In
other words, each of the 20 images are registered to 38 im-
ages, and thus, in total, 760 registrations are performed. Each
registration in turn is performed in 3 levels with increasing
degrees of freedom, by first performing rigid registration,
and it is then followed by affine and diffeomorphic Demons
registrations [12] respectively.

While studying the effect of varying the number of atlases,
notice that R atlases from a dataset of N images can be

selected in NPR ways. For example, 10 atlases from a
dataset of 19 images can be selected in (19P10 =) 92,378
ways. Since evaluation of so many combinations is not
practically feasible, in this work, we randomly select the
required number of atlases from the entire dataset, and
then repeat the whole evaluation 5 times in order to avoid
any bias in the random atlas selection process. All those
repeated evaluations have shown similar trends in accuracy,
and resulted in same conclusions. Hence, we present here
results from just one of those five evaluations.

Multi-atlas segmentation results with varying number of
atlases is evaluated particularly in 3 specific scenarios: (i)
fusion based on atlases from the original OASIS dataset,
(ii) fusion based on flipped versions of atlases used in the
first scenario, and (iii) fusion based on both original and
flipped atlases used in the preceding two scenarios. Notice
that when we say the number of atlases as ‘R’, it means
that ‘R’ original and their corresponding ‘R’ flipped atlases
are used in scenarios (i) and (ii) respectively, while both
original and flipped atlases (i.e., 2R atlases in total) are used
in scenario-(iii). Quantitative evaluations are performed using
Dice Similarity Metric (DSM). DSM is a commonly used
statistical metric that provides a measure average percentage
of overlap between ground truth and automated segmentation
results.

Fig. 1 shows segmentation results for one of the images
when using 4 atlases. Ground truth and automated segmen-
tation results from all 3 approaches, in one of the axial,
coronal and sagittal slices are presented in this figure along
with the volumes of each structure. From these images,
improvements from combined approach (with doubling of
atlases) can be visually observed for some of the structures.
However, number of slices presented here are not enough
to visually notice the differences for all structures, and also
with varying number of atlases.

Fig. 2 presents overall DSM values computed across all
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(a) 3-Atlases

(b) 10-Atlases

(c) 19-Atlases

Fig. 3: Average Dice Similarity Metric (DSM) values for 15
structures with (i) original, (ii) flipped, and (iii) combined
atlases, while using 3, 10 and 19 atlases. Structure names
corresponding to these label numbers are mentioned in
Table I.

15 structures and 20 images, with varying number of atlases.
It can be noticed from this graph that when the number of
original atlases is less (< 5), improvements due to doubling
of atlases are very significant compared to the remaining
2 approaches. One can also notice that DSM values are
typically improving with the increasing number of atlases,
and reaching a saturation point when the number of atlases
is around 10. Another interesting observation here is that
results when using only the flipped atlases are consistently
inferior to the results from original atlases; it requires further
investigations and inputs from clinical experts for finding out
the exact reason for this behavior.

Fig. 3 presents average structure-wise DSM values while
using 3, 10 and 19 atlases. These three values of atlases
respectively represent low, moderate and, using all the avail-

able atlases. Table I presents the exact DSM values plotted in
Fig. 3, with the best DSM values among the three approaches
for a given number of atlases marked in bold for easy
reference. It can be noticed from these results that the trend
of DSM values observed at individual structure level is very
similar to the overall DSM trend observed in Fig. 2.

IV. CONCLUSIONS

In this paper, we have studied the effect of doubling the
number of atlases in multi-atlas segmentation of MR brain
images by exploiting the bilateral symmetry of the human
brain. We are particularly interested in performing this study
with varying number of atlases as that can shed light on
when to include (or when there is no need to include)
flipped atlases during fusion. Evaluations are performed for
segmentation of 15 subcortical structures in the publicly
available OASIS dataset of 20 normal brain MR images. It
is found that when the number of atlases is around 10 or
more, there is no significant improvement in accuracy with
doubling of atlases. On the other hand, if the number of
available atlases is less (e.g., <= 5), there is a significant
improvement in segmentation accuracy with doubling of
atlases.
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