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Abstract—Phase unwrapping is a crucial signal processing
problem in several applications that aims to restore original
phase from the wrapped phase. In this letter, we propose a novel
framework for unwrapping the phase using deep fully convo-
lutional neural network termed as PhaseNet. We reformulate
the problem definition of directly obtaining continuous original
phase as obtaining the wrap-count (integer jump of 27) at each
pixel by semantic segmentation, and this is accomplished through
a suitable deep learning framework. The proposed architecture
consists of an encoder network, a corresponding decoder network
followed by a pixel-wise classification layer. The relationship
between the absolute phase and the wrap-count is leveraged in
generating abundant simulated data of several random shapes.
This deliberates the network on learning continuity in wrapped
phase maps rather than specific patterns in the training data.
We compare the proposed framework with the widely adapted
quality-guided phase unwrapping algorithm and also with the
well known MATLAB’s unwrap function for varying noise levels.
The proposed framework is found to be robust to noise and
computationally fast. The results obtained highlight that Deep
Convolutional Neural Network (DCNN) can indeed be effectively
applied for phase unwrapping, and the proposed framework will
hopefully pave the way for the development of a new set of deep
learning based phase unwrapping methods.

Index Terms—Phase Unwrapping, Deep Convolutional Neural
Network, Encoder, Decoder, Semantic Segmentation.

I. INTRODUCTION

HASE UNWRAPPING is a classic signal processing

problem that refers to recovering the originial phase
value from the principal value (-7 7]. Two dimensional phase
unwrapping problem arises in many applications such as
optical measurement techniques(e.g., digital holographic in-
terferometry and fringe projection profilometry [1]), Synthetic
Aperture Radar (SAR) [2] and Magnetic Resonance Imaging
(MRI) [3]. Phase estimated from these applications is directly
proportional to the physical parameter under consideration
such as object shape, terrain elevation and magnetic field
inhomogeneity.

Ideally phase unwrapping could be accomplished by ad-
dition or subtraction of 27 at each pixel depending on the
phase difference between the neighboring pixels. However,
in practice, phase unwrapping is a very challenging problem
because of the presence of severe noise, rapidly varying phase
changes and phase discontinuities.

Many phase unwrapping algorithms have been proposed
over the years and they can be broadly classified into two
categories: path-following approaches and minimum norm
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approaches. Most of the path-following algorithms perform
phase integration along the path chosen to recover the true
phase. There are four kinds of path-following algorithms: 1)
quality-guided algorithm [4], [5] ; 2) branch cut algorithm
[6]; 3) mask cut algorithm [7]; 4) minimum discontinuity
algorithm [8], [9]. Generally these algorithms are compu-
tationally efficient but are not robust to severe noise as
the error present at a point or local region may propagate
along the path chosen. Minimum-norm methods [10], [11]
minimize the difference between the local derivative of the
true phase and that of the wrapped phase to carry out phase
unwrapping. Minimum-norm methods are robust to noise but
produce over smooth phase and are computationally intensive
thus making them unsuitable for real-time measurements.
Schwartzkopf et. al., [12] proposed a feed-forward multilayer
perceptron neural network that detects discontinuities based on
the computation of probabilities over a local patch. The main
limitation of that method is that it’s output is path dependent.

Deep learning methods have been extensively used in object
detection and image classification e.g., [13], [14] and have
been achieving state-of-the-art performance. DCNNs have also
been applied in various image processing applications such as
image super resolution [15], medical image segmentation [16],
depth predication in stereo and monocular images [17]. Fur-
ther, there is a mounting evidence that DCNNs are setting
new records in many of these applications. Despite of all
the successes in wide variety of vision applications, to our
knowledge there is no framework that successfully uses DCNN
to unwrap the phase.

In this letter, we try to abridge this gap by proposing a
deep learning based phase unwrapping framework that uses
DCNN, and it is referred to as “PhaseNet”. In the proposed
framework, phase unwrapping is formulated as a semantic
segmentation problem. Semantic segmentation, which is also
referred to as “dense predictions” or “pixel-wise classifica-
tion,” aims at classifying each pixel into one of the pre-
determined classes depending on the class of its enclosing
object or region [18], [19].

The proposed PhaseNet takes wrapped phase as input and
wrap-count (i.e., integer multiple of 27 to be added at each
pixel of wrapped phase to restore original phase) as semantic
label. Furthermore, a clustering-based post-processing is also
proposed that explicitly incorporates the information of the
locations of +27 discontinuities. It is found that the proposed
PhaseNet is efficient when compared to the conventional phase
unwrapping methods in terms of robustness to noise and
computational time.
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Fig. 1: Sample training data that is generated by repeatedly
performing arithmetic operations on Gaussian functions with
randomly varying mean and variance values.

II. PROPOSED METHOD

Phase unwrapping can also be interpreted as determining
the unknown integral multiple of 27 to be added at each pixel
of the wrapped phase map to restore the true phase. The true
phase ® can be estimated from wrapped phase ¥ as

Pay) = Yoy + 27 K(ay), (1

where (x,y) denotes the spatial coordinates of a pixel and k
denotes integer multiple of 27 referred to as ‘wrap-count’ to
be added to wrapped phase to get the absolute phase.

In the proposed framework, instead of training the architec-
ture for directly obtaining true phase from wrapped phase as a
regression problem, we effectively convert this into semantic
segmentation problem through Eq. 1. The phase unwrapping
is learned through framework that takes wrapped phase ¥, .
as input and gives the output as wrap-count k;,). The
ground truth for the DCNN to obtain wrap-count k) can
be computed using the following equation:

Dy — U,
(,9) (m) )

k(z,y) = round ( o

Phase unwrapping is a severely ill-posed problem as two
regions having same shape, size and position can still belong
to different classes depending on the class of neighborhood
region or pixel. Hence, understanding the relationship between
different classes is the foremost requirement as contrary to
most of the deep learning applications that are trained to learn
conformity in features or a specific pattern.

Although fully connected neural networks have demon-
strated superior results in object recognition and image classifi-
cation, they are not generally used for semantic segmenation as
they could potentially lose the spatial information. On the other
hand, Fully Convolutional Neural (FCN) networks [18], [19],
[20] can recognize the spatial relationships between different
classes. Furthermore, FCNs can also take arbitrary sized
input and produce corresponding sized output with efficient
interface and learning. Hence, we considered convolutional
encoder-decoder architecture that is fully convolutional as that
correlates with our problem definition.

The proposed architecture consists of encoder network and
corresponding decoder network. Similar to SegNet [19], up-
sampling layer of decoder network uses max-pooling indices
obtained from the corresponding max-pooling layer of the
encoder network to upsample the low resolution feature maps.

Encoder Decoder

Wrap

[T conv+BN
- Upsampling

Conv-Convolution, BN-Batch Normalization

I Downsampling

I softmax Classifier

Fig. 2: An illustration of the Convolutional Encoder-Decoder
architecture. Wrapped phase is given as input, and wrap-count
at each pixel is given as ground truth.

The two key advantages of reusing max-pooling indices in the
decoder network are: (i) it improves preciseness of boundaries
(ii) it reduces the number of parameters enabling end-to-end
training.

A. Generation of Data

One of the compelling requisites for deep learning tech-
niques is to have large labeled dataset for training. In phase
unwrapping, unlike in many other applications, there is a
definitive input-output relationship between the wrapped phase
and the wrap-count, as shown in Eq. 2. We exploit this
relationship for generating abundant simulated data containing
several random shapes.

More specifically, training data for phase unwrapping is gen-
erated by repeatedly performing arithmetic operations such as
addition and subtraction on Gaussian functions with randomly
varying mean and variance values. This enables the network
to learn phase continuities for any general shapes rather than
limiting it to certain definitive patterns. Furthermore, Gaussian
noise was added to generated data to make the training dataset
more practical. Fig. 1 gives a glimpse of training data that is
used in training.

B. Model Architecture

The proposed architecture is illustrated in Fig. 2 and the
details of the network configuration are shown in Table I.
It consists of an encoder network which has three max-
pooling layers interleaved between seven convolutional layers.
Corresponding to each encoder layer, there is a decoder layer
that semantically projects the low resolution features learnt
by the encoder onto the pixel space. Upsampling layer in the
decoder network upsamples its input feature maps from the
indices received from the corresponding max-pooling layer of
encoder.

After comprehensive experimentaion, it is found that a
kernel size of 5 x 5 provides optimal receptive field along with
channel size of 128. Hence these values are used through-
out the network. Regularization is also incoroprtead in the
network to prevent over-fitting by introducing dropout layers
after max-pooling layerss 3 and before upsampling layers ;.
Convolutional layers of encoder are followed by element-
wise rectified linear nonlinearity operation (ReL.U) and Batch
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TABLE I: Proposed network configuration for PhaseNet.

 #Filters  Size
Convy+ReLU 128 5 x5  256%x256 x 128
Conva 3+ReLU 128 5 x5  256x256 x 128
Max-pooling 2X2 128x128 x 128
Convy, 5+RelL.U 128 5 x5  128x128 x 128
Max-poolinga 2x2 64x64 x 128
Convg,7+ReLU 128 5 x5 64x64 x 128
Max-poolings 2X2 32x32 x 128
Upsampling; 2x2 64x64 x 128
Convsg 9 128 5 x5 64x64 x 128
Upsamplinga 2X2 128x128 x 128
COIlV10,11 128 5 x5 128 %128 x 128
Upsamplings 2X2 256x256 x 128
Convio 13 128 5 x5  256%x256 x 128
Convig N 1 x1 256x256 x N

Conv-Convolution, N-Number of classes
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Fig. 3: Output of DCNN shown in Fig. (a) is further improved
by clustering-based post-processing. Arrows in Fig. (a) indi-
cate the misclassified regions that got corrected through the
proposed post-processing.

Normalization(BN) [21]. Notice that no nonlinearity is present
in the decoder network. Max—Pooling layers have window
size of 2 x 2 and stride of two. Dimension of feature maps
at the final decoder layer is reduced by convolving with
1 x 1 x 128 x N trainable filters where N is the number
of classes. The resultant of this is fed to softmax classifier
that classifies each pixel independently.

C. Post-processing: Clustering-based Smoothness

Fig. 3(a) shows the output of DCNN, and Fig. 3(b) shows
the corresponding ground truth. It can be noted from the
regions indicated with arrow marks in Fig. 3(a) that (i) the
pixels around the closely disconnected regions, and (ii) the
pixels around suddenly varying phase region are misclassified.
In order to further improve these results, we propose the
following clustering-based approach for enforcing smoothness
by incorporating complementary information.

The wrapped phase is convoluted with isotropic the Lapla-
cian filter [22] to obtain residual pixels. These residual pixels
are excluded from the wrapped phase, and disconnected clus-
ters are formed by 8-connected neighborhood [22]. Disjoined
clusters are binarized and the whole cluster is assigned an
unique wrap-count by obtaining the mode of the wrap-count
from the output of DCNN in that particular region. Output of
the DCNN is retained across residual pixel region. Fig. 3(c)
shows the wrap-count at each pixel after performing the afore-
mentioned post-processing. Since the wrap-counts at residual
pixels locations are preserved, there is still an undesirable

3

TABLE II: Mean Square Error (MSE) & processing time for
the PhaseNet, QGPU and MATLAB’s unwrap function.

Method MSE for SNR = 0 dB  Time in Seconds
PhaseNet 2 0.18
Quality-guided Unwrap 11 24
MATLAB’s Unwrap 17 0.05

classification along the contours of clusters. This is eliminated
by passing it through median filter after multiplying wrap-
counts with 27 and adding that with wrapped phase. Fig. 4
presents a block diagram of the entire framework of PhaseNet
by integrating all the steps.

III. EXPERIMENTAL RESULTS

Training dataset consists of 10000 training samples, and the
size of each sample is 256 x 256 x 1. Wrapped phase is given as
input to the DCNN (minimum value is set to zero by shifting
the values). The wrap-counts in the training dataset are varying
in the range of -15 to 15 (i.e., -90 to 90 radians) constituting a
31 class problem. Due to imbalance of class labels in training
dataset, the PhaseNet is able to accurately unwrap phase values
ranging up to -36 to 36 radians. The weights of all the layers
are initialized from scratch by the initialization described
in [23]. Cross-entropy loss and Adam optimizer [24] with
momentum 0.9 and initial learning rate of 0.0001 is used. It is
found that small learning rate is necessary to ensure that the
model converges smoothly. Dropout probability is set to 0.25.
The network converges after approximately 100K iterations.
Training takes about 10 hours on NIVIDA GTX 1080-Ti GPU
with 11 GB memory.

To evaluate the robustness of the PhaseNet for varying noise,
peaks function of size 256 x 256 with various noise levels
are simulated in MATLAB 2018a. The performance of the
method is compared with the well known quality-guided phase
unwrapping (QGPU) method [25] and MATLAB’s unwrap
function. Fig. 5(a) and 5(b) respectively show the wrapped
phase at SNR = 0 dB and the corresponding ground truth for
unwrapped phase. Fig. 5(c) shows the phase estimated from
the PhaseNet. Fig. 5(d), 5(e) and 5(f) show the error plots
for the proposed PhaseNet, QGPU and MATLAB’s unwrap
respectively. It can be noted from the error plot of QGPU that
half of the reference plane is wrongly displaced because of
high noise level. Moreover, it is found from our experiments
that the performance of QGPU is unpredictable at low SNR
levels. The error plot of MATLAB’s unwrap function has
obvious error propagation along the path leading to inferior
results. On the other hand, PhaseNet performed well compared
to the other methods and it is found to be very robust to noise.

Fig. 6 shows error analysis for all the three methods for
varying SNR values. It can be noted from these results that
at high SNR values, all the three methods are performing
equally well. On the other hand, at low SNR values, the
proposed PhaseNet clearly outperforms the other two methods.
More specifically, unlike the other two methods, the proposed
approach almost reliably reconstructs the phase map even up to
a noise level of -2 dB. Table II presents the Mean Square Error
(MSE) and processing time values for all the three methods for
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Fig. 4: Tlustration of the proposed framework. Wrapped phase is given as input to the DCNN. Output of the DCNN with
clustering-based post-processing gives the wrap-count. It is multiplied with 27 and resultant is added with wrapped phase to

retrieve the true phase.

500
100

150

200

250

2 15
1 4 10
5
0 0
0
-1 -
20
2 -10
200 200 s
-3 100 100
00

(a) Wrapped phase at SNR = 0 dB (b) Ground truth for unwrapped
phase

50 100 150 200 250

200

100 100 2%
00

(c) Unwrapped from

PhaseNet

phase (d) Error plot of PhaseNet

(e) Error plot of QGPU

(f) Error plot of MATLAB’s un-
wrap

Fig. 5: Simulation results of PhaseNet, QGPU and MATLAB’s
unwrap function at SNR = 0 dB.

the unwrapping of the peaks function at a SNR value of 0 dB.
It can be noted that the computational time of the proposed
method is comparable to MATLAB’s unwrap method, and has
the least MSE value among all the three methods.

As described in section II-A, the PhaseNet has been trained
with randomly varying shapes that are generated by combining
Gaussians with varying mean and variance values. The adapt-
ability of the PhaseNet to different regular shapes like cones
and pyramids is also evaluated, and the results are shown in
Fig. 7. It can be be noted that the proposed framework is able
to predict the wrap-counts even for regular shapes and produce
accurate results.
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Fig. 6: Error observed using the PhaseNet, QGPU and MAT-
LAB’s unwrap as a function of the SNR.

(a) Wrapped phase

(b) Unwrapped phase (c) Wrap-count pre-
diction of PhaseNet

Fig. 7: Qualitative assessment of the adaptability of the
PhaseNet for unwrapping regular shapes.

IV. CONCLUSIONS

We presented a novel Deep Convolutional Neural Net-
work (DCNN) based framework for phase unwrapping, and
is referred to as PhaseNet. The classical phase unwrapping
problem is reformulated as a semantic segmentation problem,
and a fully convolutional architecture is proposed for solv-
ing this problem. The training data generation procedure in
this paper is quite general, and in future, it can be tailor-
made for customizing it to application-specific challenges like
rapidly varying phase and discontinuities. The results from the
PhaseNet are compared with two other widely used methods,
and it is found that the proposed framework achieves good
performance even under severe noise conditions with less
computational time.
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