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ABSTRACT
Phase unwrapping is an important problem in several applications
that attempts to restore original phase from wrapped phase. In
this paper, we propose a novel phase unwrapping model based on
the deep convolutional neural network by formulating the phase
unwrapping as a semantic segmentation problem. The proposed
architecture consists of a convolutional encoder network and cor-
responding decoder network followed by a pixel-wise classification
layer. One of the critical challenges in DCNN is availability of large
set of labeled training data. This issue is effectively circumvented for
the proposed framework through a generic simulation procedure
that automatically generates large labeled data. Results from the
proposed method are compared with widely used quality-guided
phase unwrapping algorithm for various SNR values. It is found that
the proposed method is performing well both in terms of accuracy
and computational time, even in the presence strong noise. To the
best of our knowledge, this is the first work that uses convolutional
neural network for phase unwrapping, and this will hopefully pave
the way to a new class of techniques for unwrapping the phase.

CCS CONCEPTS
• Hardware → Digital signal processing; • Computing method-
ologies→ Image segmentation; Reconstruction; Image processing.
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1 INTRODUCTION
Recovering the original phase value from the principal value is a
classic signal processing problem often known as phase unwrap-
ping. Two-dimensional phase unwrapping problem arises in vari-
ous applications, such as terrain elevation estimation in Synthetic
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Aperture Radar (SAR) [8], degree of magnetic field inhomogene-
ity in the water/fat separation problem of Magnetic Resonance
Imaging (MRI) [4] and optical measurement techniques like Fringe
Projection Techniques (FTP) [14] and digital holographic interfer-
ometry [22].

Phase unwrapping aims to retrieve the original phase from the
wrapped phase by removing the artificial 2π discontinuities and
making it continuous. Although obtaining the true phase from
the wrapped phase appears effortless that could be computed by
addition/subtraction of 2π at each pixel depending on the phase
difference between the neighboring pixels, however in the presence
of strong noise and inconsistencies the problem is ill-posed and
recovery of true phase becomes challenging.

Many unwrapping algorithms have been proposed over the years.
These algorithms can be broadly classified into two categories:
Path-following approaches and Minimum norm approaches. Most
path-following algorithms perform phase integration along path
chosen to recover true phase. There are four kinds of path-following
algorithms: 1) quality-guided algorithm [25], [24]; 2) branch cut al-
gorithm [11]; 3) mask cut algorithm [7]; 4) minimum discontinuity
algorithm [23], [6], [18]. Generally these algorithms are compu-
tationally efficient but are not robust to severe noise as the error
present at a point or local region may propagate along the path.
Minimum normmethods [10], [21] minimize the difference between
the local derivative of the true phase and that of the wrapped phase
to carry out phase unwrapping which produces over smooth phase.
Minimum norm methods are robust to noise and can produce ac-
ceptable results as the noise or inconsistency in local region will
not propagate as in path following methods. However, minimum
norm methods are computationally intensive and slow thus making
them unsuitable for real time measurements.

Deep learning methods have been extensively studied in object
detection and image classification e.g., [15] [2] and results have out-
performed previous state-of-the-art. Deep learning techniques have
also been applied in various image processing applications such
as image super resolution [3], medical image segmentation [20],
depth predication in stereo and monocular images [5] etc. In recent
years, the applications of deep learning methods have spanned to
vast number of fields and applications and they prove to be the best
state-of-the-art algorithms in each case. However, to the best of
our knowledge, phase unwrapping based on Deep Convolutional
Neural Networks (DCNN) has not been explored in the literature.

Motivated by the advances in DCNNs we propose a new method
for phase unwrapping using convolutional encoder-decoder archi-
tecture by posing it as semantic segmentation problem. Semantic
segmentation achieves fine-grained inference by making predica-
tion at every pixel also referred to as dense classification or pixel-
wise classification in which each pixel is labeled with a class of its
enclosing object or region [19], [1].
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Figure 1: Sample training data that is generated by repeatedly performing random arithmetic operations on the Gaussian
function of various mean and variance values.

The proposed model takes wrapped phase as input and outputs
thewrap-count (the associated 2π jumpwith respect to thewrapped
phase in unwrapped phase) at each pixel as semantic label. The
mathematical relationship between wrapped phase and wrap-count
is leveraged and large training dataset of several random shapes is
generated in order to contemplate the network on learning general-
ized phase functions rather than conformity in the training data as
shown in Fig. 1. The output of the network is further enhanced by
enforcing model smoothness by clustering approach. The proposed
method offers high noise susceptibility compared to conventional
methods despite of not training DCNN with high noise levels. Fur-
thermore, computational time is less and that makes it adaptable
for real time applications.

2 PROPOSED METHOD
Phase unwrapping can also be described as determining the un-
known integral multiple of 2π to be added at each pixel of the
wrapped phase map, referred to as wrap-count, to restore underly-
ing true phase. The true phase Φ can be estimated from wrapped
phase Ψ as

Φ(x ,y) = Ψ(x ,y) + 2πk(x ,y), (1)
where (x,y) denotes the spatial coordinates of a pixel and k denotes
an integer. In the proposed framework, our objective is to build
a network that takes wrapped phase(Ψ(x ,y)) as input and outputs
(k(x ,y), wrap-count). An illustration of phase unwrapping is show
in the fig. 2. Fig. 2(a) shows the continuous phase map. Fig. 2(b) is
the wrapped phase computed from arctan function. Ground truth
of the proposed framework is calculated by Eq. 2 which is shown
in the Fig. 2(c).

k(x ,y) = round(
Φ(x ,y) − Ψ(x ,y)

2π
) (2)

In phase unwrapping, understanding relationship between different
classes is the foremost requirement contrary to most of the deep
learning methods that are trained to learn conformity through intra
class similarity and inter class discrimination or learn features of a
specific pattern at different translations and scaling. Two regions
having same shape, size and position can still belong to different
classes depending on the class of neighborhood region or pixel. Fully

(a) Continuous Phase (b) Wrapped Phase

(c) Wrap-count

Figure 2: An illustration of wrapping on continuous phase.
Wrapped phase will be given as input to proposed con-
volutional encoder-decoder architecture and wrap-count is
given as ground truth.

connected neural network that have demonstrated superior results
in object recognition and image classification are known to lose
spatial information. On the other hand fully convolutional encoder-
decoder neural network [19], [1] recognizes the spatial relationships
between different classes and can take arbitrary sized input and
produce corresponding sized output with efficient interface and
learning.

Therefore, we considered convolutional encoder-decoder archi-
tecture that would harmonize with our problem definition and
trained the network to detect phase continuity on synthetic data.
The network consists of decoder layer corresponding to each en-
coder layer and the upsampling layers of decoder uses max-pooling
indices obtained from corresponding max-pooling layers of encoder
similar to SegNet [1]. The primary advantage of this architecture is
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preciseness of boundaries which would improve the accuracy of
the unwrapping and reduce the number of parameters to be learned
end to end during the training.

2.1 Generation of Data
One of the important requirements of deep learning techniques
is the need for large set of training data. However, in this formu-
lation we leverage the relationship between wrapped phase and
wrap-count and circumvent the training data acquisition through
principle based relation between the absolute phase and the wrap-
count in generating large training dataset. Specifically, training data
was synthesized by generating Gaussian functions with various
mean and variance and performing random arithmetic operations
between generated Gaussians recurrently which would result in
irregular shapes. The purpose of generating irregular shapes was
to contemplate network identify phase jumps for any shape rather
than to learn regular pattern in the input. Furthermore Gaussian
noise was added to generated data to make the approach more
practical. Fig. 1 gives a glimpse of training data that is used in the
proposed method.

2.2 Formulating the Architecture
In order to ascertain that the deep convolutional networks could
indeed enforce phase continuities and detect jumps in the wrapped
phase map, we initially tested a small, easy-to train architecture and
themodel was trained to predict wrap-count from 0 to 2, i.e., unwrap
the phase maps in the range 0 to 4π . The model consisted of six
stacked convolutional layers each of kernel size 3×3×64with batch
normalization and ReLU activation function. The performance of
the model was satisfactory and we thus advanced and experimented
with different networks to choose the best performing architecture.
We tested the aforementioned model to detect higher wrap-count
but the accuracy for the higher value of wrap-count was low.

The second test was to train the network by introducing two
max-pooling and upsampling layers interleaved between six con-
volutional encoder and six convolutional decoder layers. For up-
sampling the indices of max location obtained during max-pooling
layer of the corresponding encoder is used to produce sparse fea-
ture maps and the preceding convolutional layer produces dense
feature maps for the next convolutional layer which would result
in improved boundary delineation and the method also reduces the
number of parameters to be learned from end to end during training.
The model could detect up to -30 to 30 radians and the kernel size
was extended to 5× 5× 128 to detect higher wrap-count. The model
was further improved to detect higher wrap-counts by introducing
the third max-pooling and upsampling layers constituting the final
architecture shown in the Fig. 3. Further adding the max-pooling
layer to encoder resulted in adverse results and the accuracy of the
model plunged below 20%.

2.3 Proposed Model Architecture
The proposed architecture, after extensive experimentation, is il-
lustrated in the Fig. 3. The network consists of encoder network
which has three max-pooling layers interleaved between seven con-
volutional layers. Corresponding to each encoder layer there is a
decoder layer that semantically projects the low resolution features

Table 1: Proposed network configuration.

Layer #Filters Size Output Size
Conv1+ReLU 128 5 ×5 256×256 × 128
Conv2,3+ReLU 128 5×5 256×256 × 128
Max-pooling1 2×2 128×128 × 128
Conv4,5+ReLU 128 5×5 128×128 × 128
Max-pooling2 2×2 64×64 × 128
Conv6,7+ReLU 128 5 ×5 64×64 × 128
Max-pooling3 2×2 32 ×32 × 128
Upsampling1 2×2 64 ×64 × 128

Conv8,9 128 5 ×5 64 ×64 × 128
Upsampling2 2×2 128 ×128 × 128
Conv10,11 128 5 ×5 128 ×128 × 128

Upsampling3 2×2 256 ×256 × 128
Conv12,13 128 5 ×5 256 ×256 × 128
Conv14 N 1 ×1 256 ×256 × N

learnt by the encoder onto the pixel space. Upsampling layer in
the decoder network upsamples its input feature maps from the
indices received from the corresponding max-pooling layer of en-
coder. Constant kernel size of 5 × 5 × 128 is maintained throughout
network. Drop out layers are introduced after second and third
max-pooling layers and before first and second upsampling layers
to avoid overfitting. Convolutional layer of encoder is followed by
element wise rectified linear non linearity operation (ReLU) and
batch normalization [16]. No nonlinearity is present after decoder
layer. Max-Pooling layers have window size of 2 × 2 and stride of
two. Dimension of feature map at the final decoder layer is reduced
by convolving with 1 × 1 × 128 × N (N=number of classes) train-
able filters and the resultant is fed to softmax classifier that could
classify each pixel independently. The network configuration of
the proposed method is given table 1.

2.4 Enforcing Model Smoothness
Some of the pixels obtained from convolutional neural network
were misclassified and we could recognize that there was monotony
in the regions that had misclassified labels. The two foremost re-
gions that were misclassified were as follows:

(1) In the presence of closely disconnected regions, the void that
was present was considered as wrapped phase typically as
shown in Fig. 4(b) for the wrapped phase in Fig. 4(a), before
enforcing the model smoothness.

(2) As the network was trained to detect rapid changes the
presence of unblunted region such as tip of the Gaussian
was incorrectly classified as can be seen in Fig. 4(b).

For the wrapped phase in Fig. 4(a), the learnt DCNN architecture
(discussed in Section 2.3), with the training data as generated in
Section 2.1, results in wrap-count in Fig. 4(b) as output. Fig. 4(c)
represents ground truth. Hence, there was a necessity of explicitly
enforcing model smoothness.

The procedure followed to fine-tune the output is as follows;
(1) Wrapped phase is convoluted with isotropic Laplacian fil-

ter [12] that measures the second derivative of the image to
obtain residual pixels.
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Figure 3: An illustration of the convolutional encoder-decoder architecture. Wrapped phase is given as input and the wrap-
count at each pixel is given as ground truth.

Figure 5: Illustration of the proposed framework. Wrapped phase is given as input to the DCNN. Output of the DCNN with
enforced model smoothness gives the wrap-count. It is multiplied with 2π and resultant is added with wrapped phase to
retrieve the true phase.

(2) These residual pixels are removed from the wrapped phase
by thresolding wrapped phase as shown in Fig. 4(c).

(3) Clusters can now be disconnected by 8-connected neigh-
borhood [12] as shown in Fig. 4(d). Disjoined clusters are
binarized and assigned a unique wrap-count by obtaining
the probable wrap-count from the output of DCNN at that
particular region.

(4) Wrap-count at residual pixels are retained and obtained from
output of the DCNN.

Fig. 4(d) shows the wrap-count obtained after enforcing model
smoothness. Since the wrap-count at residual pixels location is
retained, there is still undesirable classification along the contours
of clusters that can be eliminated by passing it throughmedian filter
aftermultiplyingwrap-countwith 2π and adding that withwrapped

phase. Fig. 5 demonstrates the entire framework of the proposed
method, integrating all the phases, through a block diagram.

2.5 Training
The data set consists of 10000 training samples and 1000 validation
samples each of size 256 × 256 × 1. Normalized wrapped phase is
given as input. The weights of all the layers were initialized from
scratch by initialization described in [13]. Adam optimizer [17] with
moving average decay of 0.99 and initial learning rate of 0.0001 was
used. We found that small learning rate was necessary to ensure
that the model converges smoothly. Dropout probability was set to
0.25. The network converges after approximately 100K iterations.
Training takes about 10 hours on NIVIDA GTX 1080-Ti GPU with
11GB memory.
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(a) Wrapped Phase (b) Output of DCNN

(c) Residual Pixels (d) Disconnected clusters

(e) Ground Truth (f) Output after enforcing model
smoothness by clustering approach

Figure 4: Illustration of various steps in enforcing model
smoothness by clustering approach. Output of DCNN have
some incorrectly classified pixels that necessitates enforc-
ing model smoothness explicitly.

2.6 Analysis
The DCNN was trained to detect wrap-count from -15 to 15 (-90 rad
to 90 rad) constituting 30 class problem and the proposed framework
will detect wrap-count from -6 to 6 (-36 rad to 36 rad) accurately.
By increasing the number of channels the framework could be
made to detect higher wrap-count. However, in the presence of
rapidly varying phase changes the DCNNwill lose phase continuity
information.

3 EVALUATION ON SIMULATION DATA
To evaluate the robustness of the proposed method for varying
noise, peaks function of size 256×256with various noise levels were
simulated in MATLAB 2018a. The performance of the method was
compared with the well-known quality-guided phase unwrapping
(QGPU) [9] method based on the flood-fill algorithm and variance,
and MATLAB’s unwrap function which corrects the wrapped phase
angles based on the concept of adding multiples of ±2π when abso-
lute jumps between consecutive pixels is greater than or equal to
the default jump tolerance of π radians using explicit continuity.

Figure 6: Error analysis of the unwrapped phase estimation
performed using the proposed method, QGPU method and
MATLAB’s unwrap as a function of the SNR.

Table 2: Mean Square Error (MSE) & processing time for the
PhaseNet, QGPU and MATLAB’s unwrap function.

Method MSE for SNR = 0 dB Time in Seconds

PhaseNet 2 0.18
Quality-guided Unwrap 11 24
MATLAB’s unwrap 17 0.05

Fig. 6 shows error analysis of the unwrapped phase estimation
performed using the proposed method, QGPU method and MAT-
LAB’s unwrap as a function of the SNR. The error plot for SNR =
0 dB is plotted for the proposed method, QGPU and MATLAB’s
unwrap. Wrapped phase at SNR = 0 dB is shown in the fig. 7(a).
Fig. 7(b) shows the wrap-count at each pixel obtained from the
proposed method. The phase estimate for the proposed method,
QGPU and MATLAB’s unwrap shown in the Fig. 7(c)(e)(g). Fig. 7(f)
shows the error plot of QGPU. From this error plot it can be seen
that half of the reference plane is displaced because of high noise
level. As QGPU is a path-following method the false estimation of
phase map at one region results in propagation of error (almost
cumulatively in spatial dimension) and that results in sudden rise
of MSE at low SNRs, as the quality maps will not be accurate at
least in few regions, in high noise case and the error propagates
across the path. Fig. 7(h) shows the error plot of MATLAB’s Un-
wrap function which has obvious error propagation along the path
leading to inferior results. In contrast, the proposed method offers
high noise immunity even thought it was not trained for higher
noise levels and there is complete absence of error propagation.

The qualitative assessment of the proposed method on various
test data is shown in the Fig. 8. It can be seen that the proposed
method produces accurate results for different range and shapes.
Fig. 9 shows the results of the proposed method performance test
at SNR level of 60 dB, 20 dB, 5 dB, 2 dB and -2 dB.

The processing time for obtaining the unwrapped estimation re-
quired by the proposed method and quality-guided Unwrap method
are provided in table 2. From the table it can be seen that proposed
method is extremely fast and efficient especially at high noise levels
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(a) Wrapped Phase at SNR = 0 dB (b) Wrap-count

(c) Proposed method phase estimation (d) Error plot of proposed method

(e) QGPU phase estimation (f) Error plot of QGPU

(g) MATLAB’s unwrap phase estimation (h) Error plot of MATLAB’s unwrap

Figure 7: Simulation results of proposed method, quality-
guided phase unwrapping algorithm and MATLAB’s un-
wrap function at SNR = 0 dB

and the processing time is less than a second, whereas quality-
guided method takes more time making it difficult to apply for real
time application.

4 CONCLUSION
This paper presents a novel 2D phase unwrapping method which
uses DCNN to unwrap the phase. The main motivation was to de-
sign an efficient architecture that could overcome the drawbacks of
the existing conventional methods and obtain accurate results with
less computational time for practical applications. The proposed

model addresses the problem of error propagation in low SNR con-
ditions. We compared the performance of the our proposed method
with two of the well know unwrapping techniques and the results
demonstrated that the proposed method can produce acceptable
results even in the presence of severe noise. The performance of the
method can be further enhanced by fine tuning the network with
application specific data set. The other issues of phase unwrapping
such as rapid phase changes and discontinuities can be further
explored.
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Figure 8: Qualitative assessment of the proposed method results on test dataset. The proposed method is able to predict wrap-
count accurately for different patterns.

(a) SNR=60 dB (b) SNR=20 dB (c) SNR=5 dB (d) SNR=2 dB (e) SNR=-2 dB

Figure 9: Results of the proposed methods performance test at various SNR levels. The proposed method gives good results
even under low SNR conditions.
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