Roll No: \quad Name:

INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI EE5024 - Machine Learning for Image Processing

MARKS: 40
Midterm Examination
TIME: 2 Hours

There are $\mathbf{4}$ questions and answer ALL questions. Specify clearly the key intermediate steps.

1. There is an image $\boldsymbol{I}_{\text {in }}$ of size 100×100, and 8 bits per pixel are used for storing its intensity values. 10% of its total pixels have an intensity value of $0,10 \%$ of total pixels have an intensity of $20,20 \%$ of pixels have an intensity of $100,30 \%$ of pixels have an intensity of 150 , and the remaining 30% of pixels have an intensity of 200.
a) Draw the probability density function (pdf) of $\boldsymbol{I}_{\text {in }}$ for varying intensity values.
b) Let \boldsymbol{r} be an intensity value in the input image, and $\boldsymbol{s}(\boldsymbol{r})$ be the intensity value to which \boldsymbol{r} got mapped to in the histogram equalized image. Perform histogram equalization on $\boldsymbol{I}_{\boldsymbol{i n}}$, and summarize your results by filling the following table. Mention the intermediate steps in the computation of the histogram equalization.

r	$\boldsymbol{s}(r)$
0	
20	
100	
150	
200	

c) Let \boldsymbol{r} be an intensity value in the input image, and $\boldsymbol{g}(\boldsymbol{r})$ be the intensity value to which \boldsymbol{r} got mapped to in the resulting contrast stretched image. Perform contrast stretching on $\boldsymbol{I}_{\boldsymbol{i n}}$ and summarize your results by filling the following table. Mention the intermediate steps in the computation of contrast stretching.

r	$\boldsymbol{g}(r)$
0	
20	
100	
150	
200	

d) Draw a rough sketch of pdfs of histogram equalized image in part-b, and contrast stretched image in part-c. Write your inferences from these results.
2. Let $I[u, v]$ represent an input 2D image, $\boldsymbol{k}[\boldsymbol{u}, \boldsymbol{v}]$ be the kernel used to convolve or correlate the input image.
a) Let $\boldsymbol{G}[\boldsymbol{u}, \boldsymbol{v}]$ and $\boldsymbol{H}[\boldsymbol{u}, \boldsymbol{v}]$ respectively represent the images obtained as a result of convolving and correlating $\boldsymbol{I}[\boldsymbol{u}, \boldsymbol{v}]$ with $\boldsymbol{k}[\boldsymbol{u}, \boldsymbol{v}]$. Let the indices of the kernel are varying from -W to -W both in X and Y directions. Write the mathematical expressions for $G[u, v]$ and $H[u, v]$.
b) The following figure is a cropout of an input image. Specify the correlation kernel $\mathbf{k}[\mathbf{u}, \mathbf{v}]$ for performing Sobel horizontal edge detection. For the central pixel marked in yellow in the following image, compute the result of correlating it with $\boldsymbol{k}[\boldsymbol{u}, \boldsymbol{v}]$. (No need to compute the correlation output at all pixels and it is enough to compute at the central pixel.)

11	15	12
17	10	18
14	16	13

c) For the $\boldsymbol{k}[\boldsymbol{u}, \boldsymbol{v}]$ and the input image in part-b, for the central pixel marked in yellow in the image, compute the result of convolving it with $\boldsymbol{k}[\mathbf{u}, \boldsymbol{v}]$. Is it still possible to detect a horizontal edge from this convolution result also? Justify your answer based on the convolution and correlation results.
3. Consider a two-class problem with a 1D feature vector \vec{x}. Assume that the prior probabilities of both classes are the same. Also, assume that pdf of the likelihood function of each class can be modeled by a 1-D Gaussian distribution. Let the mean and the standard deviation of the likelihood function of the first class be 0 and 1 respectively. Similarly, let the mean and the standard deviation of the likelihood function of the second class be 2 and 2 respectively.
a) Compute the decision boundaries (points) that result in minimum error probability for those two classes in terms of \vec{x}.
b) Let the penalty associated with falsely classifying a sample originating from class-1 to class-2 be 1 . Let the penalty for falsely classifying a sample originating from class-2 to class-1 be 0.5 . With these penalties, compute the decision points that result in minimizing the average risk.
c) Draw a rough sketch of the pdfs of likelihood functions of both the classes. Also, mark on it, the decision points obtained in part-a and part-b with approximate labeling of their values. Draw your inferences by comparing the decision points obtained in part-b and part-c.
4. In a three-class 2D feature vector problem, the mean vectors for each class are $[0.1,0.1]^{T}$, $[2.1,1.9]^{T}$, and $[-1.5,2.0]^{T}$ respectively. Assume that all the three classes are equiprobable. Let $\vec{x}=[1.6,1.5]^{T}$ be the feature vector to be classified into one of the three classes.
a) If each class is normally distributed with the same diagonal covariance matrix, and also with all its diagonal elements having the same value (σ^{2}), classify \vec{x} according to the Bayes minimum error probability classifier. Mention the intermediate steps in your computations.
b) If each class is normally distributed with the same covariance matrix:

$$
\Sigma=\left[\begin{array}{ll}
1.2 & 0.4 \\
0.4 & 1.8
\end{array}\right]
$$

then classify \vec{x} according to the Bayes minimum error probability classifier. Mention the intermediate steps in your computations.

