
Bayesian Classification Part-1

9.1 Classifier Design Based on Bayes Decision Theory:

- * Design of classifier is critical because of
 - (i) statistical variations of the pattern, and
 - (ii) Noise in the measuring sensors.
- * Given a feature vector, classify it into the "most probable class!
- * Let the number of classes be 'M' with each of them denoted by w₁, w₂,..., w_M

 Let 7 be the feature vector characterizing the given sample

$$\vec{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$
 (1-Dimensional space)

* The goal now is to compute $P(w_i|\vec{x})$ for i=1:m; then assign \vec{z} to the class j where $P(w_i|\vec{x}) > P(w_i|\vec{x})$, $\forall i \neq j$

p(wild) is referred to as

conditional probability (or)

a posterior; probability