Bayesian Classification Part-2

2.2 Bayes Decision Theory:

* Let us first focus on two-class classification problem.

Let us, us represent the two possible classes.

* Bayes Rule:

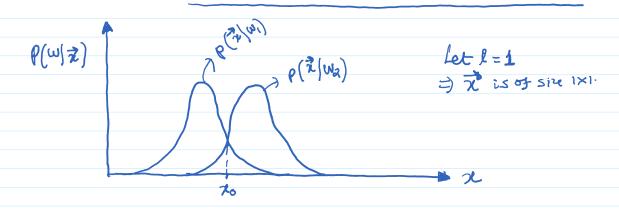
$$P(\omega_i|\vec{x}) P(\vec{x}) = P(\vec{x}|\omega_i) P(\omega_i)$$

$$P(\omega_i|\vec{x}) = \frac{P(\vec{x}/\omega_i) P(\omega_i)}{P(\vec{x})} - 1$$

- $P(\vec{z})$ is the probability density function (pdf) of \vec{z} $P(\vec{z}) = \sum_{i=1}^{2} P(\vec{z}|w_i) P(w_i) 2$
- $P(W_1)$, $p(W_2)$ are the a priori probabilities of class-1 and class-2. It is assumed that these values are known. Even if not known, they can be computed from the training data. Let W_1 and W_2 be the number of samples in the training data that belong to W_2 and W_2 .

$$P(\omega_1) \approx \left(\frac{N_1}{N_1+N_2}\right); \quad P(\omega_2) \approx \left(\frac{N_2}{N_1+N_2}\right)$$

 $P(\overline{Z}(w))$: It describes the distribution of feature vectors of each class. It can also be estimated from the training data. It is between to as likelihood function of w_i with respect to \overline{Z} .



•	Baye	s Classifical	tion Rule !

If $p(w_1|\vec{z}) > p(w_2|\vec{z}) \Rightarrow \vec{z}$ is assigned to ω , class. else, is assigned to use class.

substituting Eq - (1) =)

$$\pm f \ P(\vec{x}(\omega_1) \cdot P(\omega_1) > P(\vec{x}|\omega_2) \ P(\omega_2) = \vec{x} \in \omega, \quad (4)$$
else, $\vec{x} \in \omega_2$

Special Case: prior probabilities of all classes are equal $\Rightarrow \rho(\omega_1) = \rho(\omega_2)$

Substituting it in Eq. 4 =>

If
$$P(\vec{x}|\omega_1) > P(\vec{x}|\omega_2) \Rightarrow \vec{x} \in \omega_1$$
.