Bayesian Classification Part-5

Example:
Two-class problem (M=2)
Ore-dimensional feature vector (2=1)
Likelihord functions are Gaussian distributions with:

$$M_1 = 0, \ eta^{-2} | /2 \ i \ M_2 = 1, \ eta^{-2} | /2 \ i \ M_1 = 0, \ eta^{-2} | /2 \ i \ M_2 = 1, \ eta^{-2} | /2 \ i \ M_2 = 1 \ eta^{-2} | /2 \ i \ M_2 = 1 \ eta^{-2} | /2 \ i \ M_2 = 1 \ eta^{-2} | /2 \ eta^{-2} |$$

	probability or the risk	is equivalent to partitioning t
feature space in	to M regions.	
	are contiguous, then they mal feature space.	are separated by decision surfa
	Minimum Er	or Probability
	Ri: P(₩; 元)>P(₩;[元)	$\begin{array}{c} R_{j}:\\ P(^{\omega_{j}} \vec{x}) > P(^{\omega_{i}} \vec{x}) \end{array}$
		▶ 2 (with l=1)
		$P(\omega_i \vec{z}) - P(\omega_i \vec{z}) = 0$
		$P(\omega_i \alpha) - P(\omega_i \alpha) = 0$
Discriminant Fun	ction:	
	-	
	ntonically increasing fi	
Let $g_i(\overline{x}) \stackrel{\Delta}{=} -$	$f(\mathbf{P}(\omega_i \mathbf{z}))$ be the d	iscriminant function debined
for perform	ning classification.	
If $9_{i}(\vec{r}) - 2$	-	
tren, 2		
• 1		
$\mathbb{I}f g_i(\vec{x}) -$		

Bayesian rule. They are computationally more tracables, and in practice, they may also lead to better solutions. We will discuss more about them in the up coming classes!

24. Experian Classification for Normal Distribution;
24.1. Gaussian Probability Panchon;
1D Case (Univariate Gaussian Function):

$$P(x) = \frac{1}{\sqrt{xr}} = exp\left(-\frac{(x-u)^2}{2e^x}\right),$$
Where $u = mean value of p(x)$
 $u = E[x] = \int x p(x) dx$
 $e^2 = variance of $p(x)$
 $u = E[x] = \int (x-u)^2 p(x) dx.$
 $\int dx = E[(x-E[x])^2] = \int (x-u)^2 p(x) dx.$
 $\int dx = \frac{1}{\sqrt{xr}} =$$