

INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI
भारतीय प्रौद्योगिकी संस्थान तिरुपति

Machine Learning for Image Processing

Assignment-2

1. In a two-class one-dimensional problem, the pdfs are the Gaussians $=N\left(0, \sigma^{2}\right)$ and $N\left(1, \sigma^{2}\right)$ for the two classes, respectively. Show that the threshold x_{0} minimizing the average risk is equal to

$$
x_{0}=1 / 2-\sigma^{2} \ln \frac{\lambda_{21} P\left(\omega_{2}\right)}{\lambda_{12} P\left(\omega_{1}\right)}
$$

where $\lambda_{11}=\lambda_{22}=0$ has been assumed.
2. (a) Consider a two equiprobable class, one-dimensional problem with samples distributed according to the Rayleigh pdf in each class, that is,

$$
p\left(x \mid \omega_{i}\right)= \begin{cases}\frac{x}{\sigma_{i}^{2}} \exp \left(\frac{-x^{2}}{2 \sigma_{i}^{2}}\right) & x \geq 0 \\ 0 & x<0\end{cases}
$$

Compute the decision boundary point $g(x)=0$.
(b) If $\sigma_{1}=10$ and $\sigma_{2}=2$, calculate the corresponding decision boundary and plot a rough sketch mentioning labels for both the classes along with the decision boundary.
3. Suppose that we have n independent observations $x_{1}, x_{2}, \ldots . . . x_{n}$ from an exponential distribution whose density function is

$$
p(x \mid \theta)=\left\{\begin{array}{lc}
\theta e^{-\theta x} & x \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

a. Define the likelihood of θ and write out an expression for the likelihood $L(\theta)$ of θ
b. Find the maximum likelihood estimate $\hat{\theta}$ of θ.
4. Find the maximum likelihood estimate $\hat{\theta}$ of θ for n independent observations from Maxwell distribution whose density function is given by

$$
p(x \mid \theta)= \begin{cases}\frac{4}{\sqrt{\pi}} \theta^{3 / 2} x^{2} e^{-\theta x^{2}} \quad x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

5. The random variable x is normally distributed as $N\left(\mu, \sigma^{2}\right)$ with μ being the unknown parameter described by the Rayleigh pdf

$$
p(\mu)=\frac{\mu \exp \left(-\frac{\mu^{2}}{2 \sigma_{\mu}^{2}}\right)}{\sigma_{\mu}^{2}}
$$

Show that the maximum a posteriori probability estimate of μ is given by

$$
\hat{\mu}_{M A P}=\frac{Z}{2 R}\left(1+\sqrt{1+\frac{4 R}{Z^{2}}}\right)
$$

where

$$
Z=\frac{1}{\sigma^{2}} \sum_{k=1}^{N} x_{k}, \quad R=\frac{N}{\sigma^{2}}+\frac{1}{\sigma_{\mu}^{2}}
$$

6. Show that, for a two-dimensional multivariate Gaussian distribution, if the feature vectors are mutually independent. It can be expressed as a multiplication of two univariate Gaussian distributions.
