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Abstract. Deep learning algorithms have proven effective in solving
many medical imaging tasks in recent years. The design of lightweight
neural networks is gaining importance in the medical imaging community
as not many hospitals and clinics are equipped with high computational
resources to deploy large deep learning algorithms. Also, medical imaging
data often comes with high class imbalance and thus there is a high neces-
sity to develop deep learning models that can address this issue. With this
motivation, a resource-efficient deep learning model called Lightweight-
Fully Convolutional Network (LightFCN) is developed which can be de-
ployed in clinical settings with limited computational resources. Label
Distribution Aware Margin loss (LDAM) is used in the context of medi-
cal imaging for the first time for multi-label classification with class im-
balance. The proposed model has a smaller memory footprint, a smaller
number of parameters, lesser inference time and fewer Floating Point
Operations (FLOPS) when compared to state-of-the-art models, without
compromising on performance and can be deployed in clinical settings
with limited computational resources. The model and the performance
of the loss function are evaluated on the task of Intracranial Hemorrhage
(ICH) classification on CT scans, and the model was deployed on a Rasp-
berry Pi 4B (8GB), on which inference times were compared. It is found
that the proposed model significantly reduced the number of model pa-
rameters by a factor of 26, and reduced the inference time by a factor of
3, when compared to the popular lightweight network MobileNetV2.

Keywords: Deep Learning · Class Imbalance · Lightweight · Multi-label
· Image Classification · Intracranial hemorrhage.

1 Introduction

Deep learning models perform very well on medical imaging tasks like classifica-
tion and segmentation, but they are often over-parameterized, and lightweight
neural network design is all about looking for a network that can do the same
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task while consuming significantly less time and resources. Lightweight neural
network architectures are now being given plenty of importance due to their
multiple advantages, such as reduction of training time, inference time, lesser
memory footprint and lesser number of computations (Floating Point Opera-
tions, or FLOPS). This is gaining importance in the medical imaging commu-
nity as many hospitals and clinics are not equipped with high computational
resources to deploy large deep learning algorithms, nor can they be replaced by
new machinery owing to financial constraints.

Lightweight Neural Network design has been given a lot of importance in
Computer Vision literature. A few popular architectures include MobileNet [7],
which replaces regular convolutions with depthwise separable convolutions to
reduce the number of FLOPS and inference time, and Shufflenet [18], that uses
pointwise group convolutions and channel shuffling to reduce the number of
FLOPS. The research focus in the medical imaging community is on resource
efficient architectures, for various classification and segmentation tasks [12, 16].

Class imbalance is often prevalent in medical imaging data because classifi-
cation or segmentation tasks often involve identifying a lesion or disease, and the
collection of huge data with rarer lesions or diseases is impractical. This causes
the data to be skewed towards the “negative” samples i.e. samples without a
lesion, and when deep learning models are trained on such data, they tend to
learn to classify a test sample as negative more often. One easy way to address
skewed data problems is to simply remove the excess data belonging to majority
classes in an effort to have approximately equal number of data samples for all
classes, but that is impractical in medical imaging tasks owing to the shortage
of data in many cases, as less data makes it harder to train deep learning models
that are extremely data hungry. This brings the need to develop methods to
address the problem of class imbalance, in order to improve the performance of
deep learning models for medical imaging tasks.

Lots of work has been done in addressing class imbalance when training ma-
chine learning algorithms, but the same cannot be said for deep learning tasks.
A review paper on deep learning with class imbalance [8] broadly categorised the
methods that address class imbalance into three different types, which are re-
sampling methods, re-weighting methods and loss function based methods. Re-
sampling involves over-sampling (training with the positive-labeled data more
often than negative-labeled data) or under-sampling (skipping training on excess
negative-labeled data), while re-weighting involves giving a higher weight to the
losses for rare class data than losses for data of the frequently occurring classes,
as done in the class balanced loss [4]. There are also loss-function based methods
in which a loss function is designed to address class imbalance. Few examples for
this are the focal loss [10], which gives a higher weight to the samples that are
classified improperly by the model, and the Label-Distribution-Aware Margin
Loss (LDAM) [3] which gives a higher classification margin to the rarer class
samples than the dominant class samples.
While class imbalance has been discussed in the context of multi-class classifica-
tion and segmentation tasks, little to no attention has been paid to multi-label
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classification tasks. In multi-label classification, there are multiple classes and
more than one of them can be positive for sample data. One example of multi-
label classification tasks is the identification of different types of Intracranial
Hemorrhages (ICH) in brain CT scans, where more than one type of injuries
can be identified at once. This approach is more time and resource efficient than
using many binary-classification models to identify each kind of injury.

In this paper, we propose a lightweight architecture called Light-Fully Convo-
luted Neural Network (Light-FCN) for the multi-label image classification task
of ICH identification, along with ways to address class imbalance in the training
data to improve performance of the model.

The rest of the paper is organized as follows. Section 2 discusses the archi-
tecture of the proposed model and the loss function. The section 3 describes
the dataset and the implementation details, followed by the ablation study and
results. The conclusions are presented in Section 4.

2 Architecture and Loss Function

2.1 Lightweight Architecture Design

We propose a simple and lightweight architecture, Light-FCN, for the detection
of ICH in CT scans. This architecture is inspired from the Simple Fully Convo-
lutional Network (SFCN), proposed by Peng et al. [14], which has been found to
work well in the task of Brain Age Prediction using CT scans. SFCN is developed
based on the VGGNet [11] and the fully convolutional network (FCN) [17]. The
success of SFCN in the task of Brain Age prediction suggests that the network
is capable of extracting useful features from CT scans, which was the reason we
decided to use SFCN as the baseline architecture for our task. The architecture
of the proposed model is shown in the Fig. 1.

To reduce the complexity while maintaining the performance, two modifi-
cations are made to the baseline model. Firstly, the convolution layers have
been replaced with a combination of depth-wise separable convolutional layers
and pointwise 1 × 1 convolutional layers, an implementation inspired from the
MobileNet architecture [7]. This has significantly reduced the total number of
parameters. Secondly, inverted residual connections along with linear bottlenecks
are introduced, which were adopted from MobileNetV2 [15]. The residual con-
nections enabled easy training and improved performance without the need for
deeper networks.

The Light-FCN network has 5 expansion blocks, in each of which the num-
ber of channels are increased using pointwise convolutions (called expansion),
followed by depthwise convolutions. After that, another pointwise convolution
operation is used to shrink the number of channels (called projection), and a
residual connection is added to this output. Using expansions and projections
as mentioned above significantly reduces the number of floating point opera-
tions, with a negligible reduction in performance, as the information in a feature
map with large number of features can be represented using a lower dimensional
subspace [15]. We use a constant bottleneck width of 32 channels in LightFCN.
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Fig. 1. Illustration of the proposed architecture Light-FCN and the Expansion block.
“Conv 1x1, E” denotes a pointwise convolution layer with E output channels.

2.2 Loss Function

For multi-label classification, one can assume that all the outputs are indepen-
dent of each other and devise a loss function accordingly. The sigmoid activation
function at the output layer is suitable here, as it turns outputs into probabil-
ities independent of other outputs. Another important factor to address when
choosing a loss function, is the class imbalance in the training data. Certain loss
functions are designed to minimize the bias that is introduced in the model due
to the class imbalance present in the training data.

One such loss function is the LDAM loss function [3]. The LDAM loss intro-
duces the concept of margin ∆i =

C

n
1/4
i

(where C is a constant and ni is the class

frequency i.e. number of datapoints in the training data that belong to the i-th
class.) and adds the margin to the model output if the samples corresponds to
a negative ground truth (or subtracts the margin from the model if the samples
correspond to a positive ground truth). To address class imbalance, a higher
value of margin is used for classes that aren’t well represented, leading to higher
loss output. These modified loss outputs can be used along with any activation
function. In this work, the sigmoid activation along with the binary crossentropy
loss is chosen as we require the probabilities to be independent of each other.
Then the loss is given as follows:

(a) EDH (b) SDH (c) SAH (d) IPH (e) IVH

Fig. 2. Examples of preprocessed images for each type of injury
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L(p, q) = −1

k

∑
i

[
pi log

(
1

1 + e−(zi−∆i)

)
+ (1− pi) log

(
1

1 + e−(zi+∆i)

)]
(1)

where pi is the ground truth and zi is the output logit for the i-th class.

3 Experiments and Results

3.1 Dataset and Preprocessing

The dataset used for this work is RSNA Intracranial Hemorrhage dataset ([5]).
Each CT slice was annotated with 5 binary labels indicating the presence of the
following types of Intercranial Hemorrhage: ‘Epidural Hemorrhage (EDH)’, ‘In-
traparenchymal Hemorrhage (IPH)’, ‘Intraventricular Hemorrhage (IVH)’, ‘Sub-
dural Hemorrhage (SDH)’, and ‘Subarachnoid Hemorrhage (SAH)’. The dataset
has 21,744 CT scans in total, out of which only 7,652 had hemorrhages. As the
injuries are observed in a small number of slices of a scan, only the scans that
had injuries were included, in an effort to minimize class imbalance. The dataset
has been split into 6122, 765 and 765 scans for training, validation and testing
datasets respectively. The patient-wise and slice-wise distribution of data into
train, validation and test datasets is shown in Table 1. All the 2D slices are
down sampled to 256 × 256 and processed with intensity windowing method to
construct a three channel RGB-like image. The three kinds of Hounsfield Units
(HU) windows were considered for pre-processing as recommended in [2], each
focusing on a different type of tissue: Brain window [Window Center (WC): 40,
Window Width (WW): 80], Subdural window [WC: 80, WW: 200] and Soft Tis-
sue window [WC: 40, WW: 380]. Few examples of each type of injury and the
image obtained after pre-processing is shown in the Fig. 2.

Table 1. Patient-wise distribution of hemorrhages

Training Validation Test
Patients 6,122 765 765
Slices 2,67,279 25,783 24,636

Without hemorrhages 1,78,052 16,211 15,502
With hemorrhages 89,227 9,572 9,134

Epidural 2,709 266 170
Intraparenchymal 29,860 3,301 2,957
Intraventricular 21,586 2,408 2,211
Subarachnoid 29,299 3,407 2,969

Subdural 38,864 4,166 4,136
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3.2 Implementation Details

The proposed network has been implemented using Tensorflow [1] and has been
trained on the RSNA dataset with a mini-batch size of 64. The network has been
trained on a machine powered by 4 GeForce RTX 2080 Ti GPUs with 11GB
memory each. No data augmentation was used during training. The Adam op-
timizer with an initial learning rate of 0.01 has been used to train the network.
To prevent overfitting, a dropout layer with a probability of 0.1 is introduced
to the final fully connected layer of the network. The values for mini-batch size,
initial learning rate and dropout are obtained by carrying out hyperparameter
optimization using the hyperband algorithm introduced by [9]. The KerasTuner
library [13] has been used to automate the process of Hyperparameter optimiza-
tion. The models are compressed using Tensorflow Lite [6], which is a framework
that automates model compression for Tensorflow models and generated com-
pressed models that can be deployed in edge devices like mobile phones or mi-
crocontrollers. The metrics that were used to measure task-related performance
are Accuracy, Sensitivity, Specificity and Area under the ROC curve (AUC).
To quantitatively measure computational efficiency, we obtain and compare the
number of model parameters, memory footprint, inference time and the num-
ber of floating point operations per second (FLOPS). For all the latter, a lower
number implies superior efficiency.

3.3 Ablation Study: From SFCN to LightFCN

Using the SFCN as the baseline model, a number of architectural modifications
have been introduced to finally obtain the LightFCN model. The list of inter-
mediate models along with the architectural modification is shown below:

1. SFCN : The Simple Fully Convoluted Network with no modifications.
2. SFCN_depthwise: All Convolution operations are replaced by Depthwise

Separable Convolutions, as used in [7]. In addition to that, the first convo-
lution layer is modified to have a stride of 2.

3. LightFCN : In addition to Depthwise Separable Convolutions, Linear Bottle-
necks and Inverted residuals are added to the model as in [15].

All the models have been trained for 5 epochs, and the results are shown
in Table 2. We can see that the architectural modifications hasn’t degraded the
performance by a lot, and yet managed to bring down the size by a significant
amount (From 12.3 MB to 1.7 MB).

3.4 Comparing performance with other models

The proposed method is compared with the state-of-the-art lightweight architec-
tures: MobileNetV2 [15] and SFCN [14]. The models were all trained with same
training data, and tested on same test data.

The quantitative comparison of the models using the aforementioned metrics
is presented in Table 3. Our model achieved performance similar to the SFCN
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Table 2. Comparison of the proposed Light-FCN model with the state-of-the-art meth-
ods.

Model Accuracy AUC Specificity Sensitivity # Params Size
SFCN 89.59 74.72 93.88 55.55 1 M 12.3 MB

SFCN_depthwise 89.85 69.68 94.38 44.97 136.1K 2.65 MB
Light-FCN 92.09 74.76 97.99 51.52 86.8 K 1.7 MB

Table 3. Performance comparison of the proposed model Light-FCN with the state-
of-the-art architectures

MobileNetV2
ICH Accuracy AUC Sensitivity Specificity

Epidural 96.66 62.10 27.06 97.14
Intraparenchymal 91.39 65.27 30.92 99.62
Intraventricular 92.36 89.22 85.40 93.05
Subarachnoid 88.56 69.92 45.36 94.47

Subdural 87.70 73.93 53.22 94.64
SFCN

Epidural 98.37 56.24 13.53 98.96
Intraparenchymal 94.30 80.87 63.22 98.53
Intraventricular 95.39 77.75 56.26 99.24
Subarachnoid 91.34 69.49 40.71 98.26

Subdural 88.96 70.10 41.72 98.47
LightFCN

Epidural 99.07 59.22 18.82 99.62
Intraparenchymal 90.63 76.28 57.42 95.14
Intraventricular 94.30 80.58 63.87 97.29
Subarachnoid 88.44 71.80 49.88 93.72

Subdural 84.23 67.55 42.47 92.64

model while reducing the number of parameters by a factor of 10. The sensitivity
percentage for epidural hemorrhage is low for all models as a result of minimum
number of samples in the training set. The highest sensitivity for SFCN and
Light-FCN is obtained for intraventricular hemorrhage.

Furthermore, the models were created using the Tensorflow framework, and
were compressed using the Tensorflow Lite framework [6] into the tflite format.
Tensorflow Lite compresses a trained model through the means of quantization,
clustering and pruning of model parameters. The resulting compressed models
were deployed on a Raspberry Pi 4B, an accessible, low-cost, feature-rich embed-
ded system, and their inference time was recorded. The sizes of the considered
compressed models and their inference times are given in Table 4. The FLOPS
for each model is also listed in Table 4.
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Table 4. Comparison of the compressed model size for the proposed model Light-FCN
and different architectures along with their inference time (per slice) on Raspberry Pi

Model Compressed model size Inference time #Params FLOPS
MobileNetV2 8.46 MB 190.51 ms 2.3M 615M

SFCN 3.8 MB 174.79 ms 1M 2.07G
Light-FCN 312 KB 61.15 ms 86.8K 189M

Table 5. Evaluating performance of loss functions on the test dataset after training
Light-FCN on the training dataset for 6 epochs.

Loss Function Accuracy AUC Sensitivity Specificity
BCE 93.49 90.89 51.22 98.54
Focal 91.38 86.95 29.84 98.87

LDAM 92.44 91.22 65.34 94.62

3.5 Comparing Loss Functions

Using the LightFCN as the baseline model, the performance of multi-label ver-
sions of the binary crossentropy loss, focal loss and LDAM loss are compared.
The multi-label binary crossentropy loss doesn’t address class imbalance, but
the multi-label focal loss and multi-label LDAM loss try to address class imbal-
ance. In this study, three different LightFCN models are trained using each of
the losses mentioned above and the performance metrics are observed.

It was observed that the LDAM loss had the highest sensitivity and AUC
on the test dataset. Moreover, the LDAM loss seems to provide a good trade-off
between sensitivity and specificity, thereby increasing the true positive rate in the
presence of class imbalance, as expected. Interestingly, the binary crossentropy
Loss gave better experimental results than the Focal Loss in accuracy, sensitivity
and AUC. However, the LDAM loss seems to perform the best overall.

4 Conclusions

Our studies reveal that the Light-FCN architecture is capable of performing well
in the task of ICH identification while being significantly more computationally
efficient than other state-of-the-art architectures. The multi-label LDAM loss
is observed to strike a better trade-off between sensitivity and specificity and
increase the true positive rate, thereby solving the class imbalance problem to
an extent. Achieving performance better than the state-of-the-art while main-
taining computational efficiency, developing lightweight models that can process
3-dimensional scans and coming up with ways to improve performance by taking
inter-class dependency into account remains the subject of future work.
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